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Abstract

A successful approach to structured learning is to write the learning objective as
a joint function of linear parameters and inference messages, and iterate between
updates to each. This paper observes that if the inference problem is “smoothed”
through the addition of entropy terms, for fixed messages, the learning objective
reduces to a traditional (non-structured) logistic regression problem with respect
to parameters. In these logistic regression problems, each training example has a
bias term determined by the current set of messages. Based on this insight, the
structured energy function can be extended from linear factors to any function
class where an “oracle” exists to minimize a logistic loss.

1 Introduction

The structured learning problem is to find a function F (x, y) to map from inputs x to outputs as
y∗ = argmaxy F (x, y). F is chosen to optimize a loss function defined on these outputs. A
major challenge is that evaluating the loss for a given function F requires solving the inference
optimization to find the highest-scoring output y for each exemplar, which is NP-hard in general.
A standard solution to this is to write the loss function using an LP-relaxation of the inference
problem, meaning an upper-bound on the true loss. The learning problem can then be phrased as a
joint optimization of parameters and inference variables, which can be solved, e.g., by alternating
message-passing updates to inference variables with gradient descent updates to parameters [16, 9].

Previous work has mostly focused on linear energy functions F (x, y) = wTΦ(x, y), where a vector
of weights w is adjusted in learning, and Φ(x, y) =

∑

α Φ(x, yα) decomposes over subsets of
variables yα. While linear weights are often useful in practice [23, 16, 9, 3, 17, 12, 5], it is also
common to make use of non-linear classifiers. This is typically done by training a classifier (e.g.
ensembles of trees [20, 8, 25, 13, 24, 18, 19] or multi-layer perceptrons [10, 21]) to predict each
variable independently. Linear edge interaction weights are then learned, with unary classifiers
either held fixed [20, 8, 25, 13, 24, 10] or used essentially as “features” with linear weights re-
adjusted [18].

This paper allows the more general formF (x, y) =
∑

α fα(x, yα). The learning problem is to select
fα from some set of functions Fα. Here, following previous work [15], we add entropy smoothing
to the LP-relaxation of the inference problem. Again, this leads to phrasing the learning problem as a
joint optimization of learning and inference variables, alternating between message-passing updates
to inference variables and optimization of the functions fα. The major result is that minimization of
the loss over fα ∈ Fα can be re-formulated as a logistic regression problem, with a “bias” vector
added to each example reflecting the current messages incoming to factor α. No assumptions are
needed on the sets of functionsFα, beyond assuming that an algorithm exists to optimize the logistic
loss on a given dataset over all fα ∈ Fα

We experimentally test the results of varying Fα to be the set of linear functions, multi-layer per-
ceptrons, or boosted decision trees. Results verify the benefits of training flexible function classes
in terms of joint prediction accuracy.
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2 Structured Prediction

The structured prediction problem can be written as seeking a function h that will predict an output
y from an input x. Most commonly, it can be written in the form

h(x;w) = argmax
y

wTΦ(x, y), (1)

where Φ is a fixed function of both x and y. The maximum takes place over all configurations of the
discrete vector y. It is further assumed that Φ decomposes into a sum of functions evaluated over
subsets of variables yα as

Φ(x, y) =
∑

α

Φα(x, yα).

The learning problem is to adjust set of linear weightsw. This paper considers the structured learning
problem in a more general setting, directly handling nonlinear function classes. We generalize the
function h to

h(x;F ) = argmax
y

F (x, y),

where the energy F again decomposes as

F (x, y) =
∑

α

fα(x, yα).

The learning problem now becomes to select {fα ∈ Fα} for some set of functionsFα. This reduces
to the previous case when fα(x, yα) = wTΦα(x, yα) is a linear function. Here, we do not make any
assumption on the class of functions Fα other than assuming that there exists an algorithm to find
the best function fα ∈ Fα in terms of the logistic regression loss (Section 6).

3 Loss Functions

Given a dataset (x1, y1), ..., (xN , yN ), we wish to select the energyF to minimize the empirical risk

R(F ) =
∑

k

l(xk, yk;F ), (2)

for some loss function l. Absent computational concerns, a standard choice would be the slack-
rescaled loss [22]

l0(x
k, yk;F ) = max

y
F (xk, y)− F (xk, yk) + ∆(yk, y), (3)

where ∆(yk, y) is some measure of discrepancy. We assume that ∆ is a function that decomposes
over α, (i.e. that ∆(yk, y) =

∑

α ∆α(y
k
α, yα)). Our experiments use the Hamming distance.

In Eq. 3, the maximum ranges over all possible discrete labelings y, which is in NP-hard in general.
If this inference problem must be solved approximately, there is strong motivation [6] for using
relaxations of the maximization in Eq. 1, since this yields an upper-bound on the loss. A common
solution [16, 14, 6] is to use a linear relaxation1

l1(x
k, yk;F ) = max

µ∈M
F (xk, µ)− F (xk, yk) + ∆(yk, µ), (4)

where the local polytopeM is defined as the set of local pseudomarginals that are normalized, and
agree when marginalized over other neighboring regions,

M = {µ|µαβ(yβ) = µβ(yβ)∀β ⊂ α,
∑

yα

µα(yα) = 1 ∀α, µα(yα) ≥ 1 ∀α, yα}.

Here, µαβ(yβ) =
∑

yα\β
µα(yα) is µα marginalized out over some region β contained in α. It is

easy to show that l1 ≥ l0, since the two would be equivalent if µ were restricted to binary values,
and hence the maximization in l1 takes place over a larger set [6]. We also define

θkF (yα) = fα(x
k, yα) + ∆α(y

k
α, yα), (5)

1Here, F and ∆ are slightly generalized to allow arguments of pseudomarginals, as F (xk, µ) =∑
α

∑
yα

f(xk, yα)µ(yα) and ∆(yk, µ) =
∑

α

∑
yα

∆α(y
k
α, yα)µ(yα).
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which gives the equivalent representation of l1 as l1(xk, yk;F ) = −F (xk, yk) + maxµ∈M θkF · µ.

The maximization in l1 is of a linear objective under linear constraints, and is thus a linear program
(LP), solvable in polynomial time using a generic LP solver. In practice, however, it is preferable to
use custom solvers based on message-passing that exploit the sparsity of the problem.

Here, we make a further approximation to the loss, replacing the inference problem of maxµ∈M θ ·µ
with the “smoothed” problem maxµ∈M θ · µ + ǫ

∑

α H(µα), where H(µα) is the entropy of the
marginals µα. This approximation has been considered by Meshi et al. [15] who show that local
message-passing can have a guaranteed convergence rate, and by Hazan and Urtasun [9] who use it
for learning. The relaxed loss is

l(xk, yk;F ) = −F (xk, yk) + max
µ∈M

(

θkF · µ+ ǫ
∑

α

H(µα)

)

. (6)

Since the entropy is positive, this is clearly a further upper-bound on the “unsmoothed” loss, i.e.
l1 ≤ l. Moreover, we can bound the looseness of this approximation as in the following theorem,
proved in the appendix. A similar result was previously given [15] bounding the difference of the
objective obtained by inference with and without entropy smoothing.
Theorem 1. l and l1 are bounded by (where |yα| is the number of configurations of yα)

l1(x, y, F ) ≤ l(x, y, F ) ≤ l1(x, y, F ) + ǫHmax, Hmax =
∑

α

log |yα|.

4 Overview

Now, the learning problem is to select the functions fα composing F to minimize R as defined in
Eq. 2. The major challenge is that evaluating R(F ) requires performing inference. Specifically, if
we define

A(θ) = max
µ∈M

θ · µ+ ǫ
∑

α

H(µα), (7)

then we have that

min
F

R(F ) = min
F

∑

k

(

−F (xk, yk) +A(θkF )
)

.

Since A(θ) contains a maximization, this is a saddle-point problem. Inspired by previous work
[16, 9], our solution (Section 5) is to introduce a vector of “messages” λ to write A in the dual form

A(θ) = min
λ

A(λ, θ),

which leads to phrasing learning as the joint minimization

min
F

min
{λk}

∑

k

[

−F (xk, yk) +A(λk, θkF )
]

.

We propose to solve this through an alternating optimization of F and {λk}. For fixed F , message-
passing can be used to perform coordinate ascent updates to all the messages λk (Section 5). These
updates are trivially parallelized with respect to k. However, the problem remains, for fixed mes-
sages, how to optimize the functions fα composing F . Section 7 observes that this problem can be
re-formulated into a (non-structured) logistic regression problem, with “bias” terms added to each
example that reflect the current messages into factor α.

5 Inference

In order to evaluate the loss, it is necessary to solve the maximization in Eq. 6. For a given θ,
consider doing inference over µ, that is, in solving the maximization in Eq. 7. Standard Lagrangian
duality theory gives the following dual representation for A(θ) in terms of “messages” λα(xβ) from
a region α to a subregion β ⊂ α, a variant of the representation of Heskes [11].
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Algorithm 1 Reducing structured learning to logistic regression.

For all k, α, initialize λk(yα)← 0.
Repeat until convergence:

1. For all k, for all α, set the bias term to

bkα(yα)←
1

ǫ



∆(ykα, yα) +
∑

β⊂α

λk
α(yβ)−

∑

γ⊃α

λk
γ(yα)



 .

2. For all α, solve the logistic regression problem

fα ← arg max
fα∈Fα

K
∑

k=1

[

(

fα(x
k, ykα) + bkα(y

k
α)
)

− log
∑

yα

exp
(

fα(x
k, yα) + bkα(yα)

)

]

.

3. For all k, for all α, form updated parameters as

θk(yα)← ǫfα(x
k, yα) + ∆(ykα, yα).

4. For all k, perform a fixed number of message-passing iterations to update λk using θk. (Eq. 10)

Theorem 2. A(θ) can be represented in the dual form A(θ) = minλ A(λ, θ), where

A(λ, θ) = max
µ∈N

θ · µ+ ǫ
∑

α

H(µα) +
∑

α

∑

β⊂α

∑

xβ

λα(xβ) (µαβ(yβ)− µβ(yβ)) , (8)

and N = {µ|
∑

yα
µα(yα) = 1, µα(yα) ≥ 0} is the set of locally normalized pseudomarginals.

Moreover, for a fixed λ, the maximizing µ is given by

µα(yα) =
1

Zα

exp





1

ǫ



θ(yα) +
∑

β⊂α

λα(yβ)−
∑

γ⊃α

λγ(yα)







 , (9)

where Zα is a normalizing constant to ensure that
∑

yα
µα(yα) = 1.

Thus, for any set of messages λ, there is an easily-evaluated upper-boundA(λ, θ) ≥ A(θ), and when
A(λ, θ) is minimized with respect to λ, this bound is tight. The standard approach to performing
the minimization over λ is essentially block-coordinate descent. There are variants, depending on
the size of the “block” that is updated. In our experiments, we use blocks consisting of the set of all
messages λα(yν) for all regions α containing ν. When the graph only contains regions for single
variables and pairs, this is a “star update” of all the messages from pairs that contain a variable i. It
can be shown [11, 15] that the update is

λ′
α(yν)← λα(yν) +

ǫ

1 +Nν

(logµν(yν) +
∑

α′⊃ν

logµα′(yν)) − ǫ logµα(yν), (10)

for all α ⊃ ν, where Nν = |{α|α ⊃ ν}|. Meshi et al. [15] show that with greedy or randomized
selection of blocks to update,O(1

δ
) iterations are sufficient to converge within error δ.

6 Logistic Regression

Logistic regression is traditionally understood as defining a conditional distribution p(y|x;W ) =
exp ((Wx)y) /Z(x) where W is a matrix that maps the input features x to a vector of mar-
gins Wx. It is easy to show that the maximum conditional likelihood training problem
maxW

∑

k log p(y
k|xk;W ) is equivalent to

max
W

∑

k

[

(Wxk)yk − log
∑

y

exp(Wxk)y

]

.
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Here, we generalize this in two ways. First, rather than taking the mapping from features x to the
margin for label y as the y-th component of Wx, we take it as f(x, y) for some function f in a set
of function F . (This reduces to the linear case when f(x, y) = (Wx)y .) Secondly, we assume that
there is a pre-determined “bias” vector bk associated with each training example. This yields the
learning problem

max
f∈F

∑

k

[

(

f(xk, yk) + bk(yk)
)

− log
∑

y

exp
(

f(xk, y) + bk(y)
)

]

, (11)

Aside from linear logistic regression, one can see decision trees, multi-layer perceptrons, and
boosted ensembles under an appropriate loss as solving Eq. 11 for different sets of functions F
(albeit possibly to a local maximum).

7 Training

Recall that the learning problem is to select the functions fα ∈ Fα so as to minimize the empirical
risk R(F ) =

∑

k[−F (xk, yk) + A(θkF )]. At first blush, this appears challenging, since evaluating
A(θ) requires solving a message-passing optimization. However, we can use the dual representation
of A from Theorem 2 to represent minF R(F ) in the form

min
F

min
{λk}

∑

k

[

−F (xk, yk) +A(λk, θkF )
]

. (12)

To optimize Eq. 12, we alternating between optimization of messages {λk} and energy functions
{fα}. Optimization with respect to λk for fixed F decomposes into minimizing A(λk, θkF ) indepen-
dently for each yk, which can be done by running message-passing updates as in Section 5 using the
parameter vector θkF . Thus, the rest of this section is concerned with how to optimize with respect
to F for fixed messages. Below, we will use a slight generalization of a standard result [1, p. 93].

Lemma 3. The conjugate of the entropy is the “log-sum-exp” function. Formally,

max
x:xT 1=1,x≥0

θ · x− ρ
∑

i

xi log xi = ρ log
∑

i

exp
θi
ρ
.

Theorem 4. If f∗
α is the minimizer of Eq 12 for fixed messages λ, then

f∗
α = ǫ argmax

fα

∑

k

[

(

fα(x
k, ykα) + bkα(y

k
α)
)

− log
∑

yα

exp
(

fα(x
k, yα) + bkα(yα)

)

]

, (13)

where the set of biases are defined as

bkα(yα) =
1

ǫ



∆(ykα, yα) +
∑

β⊂α

λk
α(yβ)−

∑

γ⊃α

λk
γ(yα)



 . (14)

Proof. Substituting A(λ, θ) from Eq. 8 and θk from Eq. 5 gives that

A(λk, θkF ) = max
µ∈N

∑

α

∑

yα

(

fα(x
k, yα) + ∆α(y

k
α, yα)

)

µ(yα) + ǫ
∑

α

H(µα)

+
∑

α

∑

β⊂α

∑

xβ

λk
α(xβ) (µαβ(yβ)− µβ(yβ)) .

Using the definition of bk from Eq. 14 above, this simplifies into

A(λk, θkF ) =
∑

α

max
µα∈Nα

(

∑

yα

(fα(x, yα) + ǫbα(yα))µα(yα) + ǫH(µα)

)

,
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Denoising

Fi \ Fij Zero Const. Linear Boost. MLP
Zero .502 .502 .502 .511 .502

Const. .502 .502 .502 .510 .502
Linear .444 .077 .059 .049 .034
Boost. .444 .034 .015 .009 .007
MLP .445 .032 .015 .009 .008

Horses

Fi \ Fij Zero Const. Linear Boost. MLP
Zero .246 .246 .247 .244 .245

Const. .246 .246 .247 .244 .245
Linear .185 .185 .168 .154 .156
Boost. .103 .098 .092 .084 .086
MLP .096 .094 .087 .080 .081

Table 1: Univariate Test Error Rates (Train Errors in Appendix)

where Nα = {µα|
∑

yα
µα(yα) = 1, µα(yα) ≥ 0} enforces that µα is a locally normalized set of

marginals. Applying Lemma 3 to the inner maximization gives the closed-form expression

A(λk, θkF ) =
∑

α

ǫ log
∑

yα

exp

(

1

ǫ
fα(x, yα) + bα(yα)

)

.

Thus, minimizing Eq. 12 with respect to F is equivalent to finding (for all α)

argmax
fα

∑

k

[

fα(x
k, ykα)− ǫ log

∑

yα

exp

(

1

ǫ
fα(x, yα) + bkα(yα)

)

]

= argmax
fα

∑

k

[

1

ǫ
fα(x

k, ykα)− log
∑

yα

exp

(

1

ǫ
f(xk, yα) + bkα(yα)

)

]

Observing that adding a bias term doesn’t change the maximizing fα, and using the fact that
argmax g(1

ǫ
·) = ǫ argmax g(·) gives the result.

The final learning algorithm is summarized as Alg. 1. Sometimes, the local classifier fα will
depend on the input x only through some “local features” φα. The above framework accomodates
this situation if the set Fα is considered to select these local features.

In practice, one will often wish to constrain that some of the functions fα are the same.
This is done by taking the sum in Eq. 13 not just over all data k, but also over all fac-
tors α that should be so constrained. For example, it is common to model image segmen-
tation problems using a 4-connected grid with an energy like F (x, y) =

∑

i u(φi, yi) +
∑

ij v(φij , yi, yj), where φi/φij are univariate/pairwise features determined by x, and u and v
are functions mapping local features to local energies. In this case, u would be selected to max-

imize
∑

k

∑

i

[

(

u(φk
i , y

k
i ) + bki (y

k
i )
)

− log
∑

yi
exp

(

u(φk
i , yi) + bki (yi)

)

]

, and analogous expres-

sion exists for v. This is the framework used in the following experiments.

8 Experiments

These experiments consider three different function classes: linear, boosted decision trees, and
multi-layer perceptrons. To maximize Eq. 11 under linear functions f(x, y) = (Wx)y , we sim-
ply compute the gradient with respect to W and use batch L-BFGS. For a multi-layer perceptron,
we fit the function f(x, y) = (Wσ(Ux))y using stochastic gradient descent with momentum2 on
mini-batches of size 1000, using a step size of .25 for univariate classifiers and .05 for pairwise.
Boosted decision trees use stochastic gradient boosting [7]: the gradient of the logistic loss is com-
puted for each exemplar, and a regression tree is induced to fit this (one tree for each class). To
control overfitting, each leaf node must contain at least 5% of the data. Then, an optimization ad-
justs the values of leaf nodes to optimize the logistic loss. Finally, the tree values are multiplied by

2At each time, the new step is a combination of .1 times the new gradient plus .9 times the old step.
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Figure 1: The univariate (top) and pairwise (bottom) energy functions learned on denoising data.
Each column shows the result of training both univariate and pairwise terms with one function class.
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Figure 2: Dashed/Solid lines show univariate train/test error rates as a function of learning iterations
for varying univariate (rows) and pairwise (columns) classifiers.
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Figure 3: Example Predictions on Test Images (More in Appendix)
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.25 and added to the ensemble. For reference, we also consider the “zero” classifier, and a “constant”
classifier that ignores the input– equivalent to a linear classifier with a single constant feature.

All examples use ǫ = 0.1. Each learning iteration consists of updating fi, performing 25 iterations
of message passing, updating fij , and then performing another 25 iterations of message-passing.

The first dataset is a synthetic binary denoising dataset, intended for the purpose of visualization. To
create an example, an image is generated with each pixel random in [0, 1]. To generate y, this image
is convolved with a Gaussian with standard deviation 10 and rounded to {0, 1}. Next, if yi = 0, φk

i

is sampled uniformly from [0, .9], while if yki = 1, φk
i is sampled from [.1, 1]. Finally, for a pair

(i, j), if yki = ykj , then φk
ij is sampled from [0, .8] while if yki 6= ykj φij is sampled from [.2, 1]. A

constant feature is also added to both φk
i and φk

ij .

There are 16 100× 100 images each training and testing. Test errors for each classifier combination
are in Table 1, learning curves are in Fig. 2, and example results in Fig. 3. The nonlinear classifiers
result in both lower asymptotic training and testing errors and faster convergence rates. Boosting
converges particularly quickly. Finally, because there is only a single input feature for univariate
and pairwise terms, the resulting functions are plotted in Fig. 1.

Second, as a more realistic example, we use the Weizmann horses dataset. We use 42 univariate
features fk

i consisting of a constant (1) the RBG values of the pixel (3), the vertical and horizontal
position (2) and a histogram of gradients [2] (36). There are three edge features, consisting of a
constant, the l2 distance of the RBG vectors for the two pixels, and the output of a Sobel edge filter.
Results are show in Table 1 and Figures 2 and 3. Again, we see benefits in using nonlinear classifiers,
both in convergence rate and asymptotic error.

9 Discussion

This paper observes that in the structured learning setting, the optimization with respect to energy
can be formulated as a logistic regression problem for each factor, “biased” by the current messages.
Thus, it is possible to use any function class where an “oracle” exists to optimize a logistic loss.
Besides the possibility of using more general classes of energies, another advantage of the proposed
method is the “software engineering” benefit of having the algorithm for fitting the energy modular-
ized from the rest of the learning procedure. The ability to easily define new energy functions for
individual problems could have practical impact.

Future work could consider convergence rates of the overall learning optimization, systematically
investigate the choice of ǫ, or consider more general entropy approximations, such as the Bethe
approximation used with loopy belief propagation.

In related work, Hazan and Urtasun [9] use a linear energy, and alternate between updating all in-
ference variables and a gradient descent update to parameters, using an entropy-smoothed inference
objective. Meshi et al. [16] also use a linear energy, with a stochastic algorithm updating inference
variables and taking a stochastic gradient step on parameters for one exemplar at a time, with a pure
LP-relaxation of inference. The proposed method iterates between updating all inference variables
and performing a full optimization of the energy. This is a “batch” algorithm in the sense of mak-
ing repeated passes over the data, and so is expected to be slower than an online method for large
datasets. In practice, however, inference is easily parallelized over the data, and the majority of
computational time is spent in the logistic regression subproblems. A stochastic solver can easily be
used for these, as was done for MLPs above, giving a partially stochastic learning method.

Another related work is Gradient Tree Boosting [4] in which to train a CRF, the functional gradient
of the conditional likelihood is computed, and a regression tree is induced. This is iterated to produce
an ensemble. The main limitation is the assumption that inference can be solved exactly. It appears
possible to extend this to inexact inference, where the tree is induced to improve a dual bound, but
this has not been done so far. Experimentally, however, simply inducing a tree on the loss gradient
leads to much slower learning if the leaf nodes are not modified to optimize the logistic loss. Thus,
it is likely that such a strategy would still benefit from using the logistic regression reformulation.
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Appendix for paper: Structured Learning via Logistic Regression

Theorem 5. The difference of l and l1 is bounded by

l1(x, y, F ) ≤ l(x, y, F ) ≤ l1(x, y, F ) + ǫHmax, Hmax =
∑

α

log |yα|.

Proof. Defining µ∗ = argmaxµ∈M θ ·µ and µ′ = argmaxµ∈M θ ·µ+ ǫ
∑

α H(µα), one can write

l(x, y;F )− l1(x, y;F ) = −F (x, y) + max
µ∈M

(

θ · µ+
∑

α

ǫH(µα)

)

+ F (x, y)− max
µ∈M

θ · µ

= max
µ∈M

(

θ · µ+
∑

α

ǫH(µα)

)

− max
µ∈M

θ · µ

= θ · µ′ − θ · µ∗ +
∑

α

ǫH(µ′
α)

≤ ǫ
∑

α

log |yα|.

The last line follows from the fact that θ · µ∗ ≥ θ · µ′, and that H(µ′
α) ≤ log |yα|.

Denoising

Fi \ Fij Zero Const. Linear Boost. MLP
Zero .490 .490 .490 .441 .490

Const. .490 .490 .490 .440 .490
Linear .443 .077 .059 .048 .033
Boost. .429 .032 .014 .008 .008
MLP .435 .031 .014 .008 .008

Horses

Fi \ Fij Zero Const. Linear Boost. MLP
Zero .211 .211 .212 .209 .210

Const. .211 .211 .212 .209 .210
Linear .141 .139 .126 .105 .113
Boost. .074 .068 .063 .057 .060
MLP .054 .051 .046 .039 .041

Table 2: Univariate Training Error Rates
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Figure 4: Example Predictions on the Denoising Dataset
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Figure 5: Example Predictions on the Denoising Dataset
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Figure 6: Example Predictions on the Denoising Dataset
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Figure 7: Example Predictions on the Horses Dataset
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Figure 8: Example Predictions on the Horses Dataset
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Figure 9: Example Predictions on the Horses Dataset
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Figure 10: Example Predictions on the Horses Dataset
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Figure 11: Example Predictions on the Horses Dataset
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Figure 12: Example Predictions on the Horses Dataset
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